Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(27): eadi0263, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418522

RESUMO

Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , DNA/metabolismo , Hibridização de Ácido Nucleico , DNA Polimerase Dirigida por DNA/metabolismo , DNA Nucleotidilexotransferase/genética , DNA Nucleotidilexotransferase/metabolismo , Engenharia de Proteínas
2.
Nanoscale Adv ; 5(6): 1760-1766, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926575

RESUMO

The optical properties of vertical semiconductor nanowires can allow an enhancement of fluorescence from surface-bound fluorophores, a feature proven useful in biosensing. One of the contributing factors to the fluorescence enhancement is thought to be the local increase of the incident excitation light intensity in the vicinity of the nanowire surface, where fluorophores are located. However, this effect has not been experimentally studied in detail to date. Here, we quantify the excitation enhancement of fluorophores bound to a semiconductor nanowire surface by combining modelling with measurements of fluorescence photobleaching rate, indicative of the excitation light intensity, using epitaxially grown GaP nanowires. We study the excitation enhancement for nanowires with a diameter of 50-250 nm and show that excitation enhancement reaches a maximum for certain diameters, depending on the excitation wavelength. Furthermore, we find that the excitation enhancement decreases rapidly within tens of nanometers from the nanowire sidewall. The results can be used to design nanowire-based optical systems with exceptional sensitivities for bioanalytical applications.

3.
ACS Nanosci Au ; 2(3): 140-159, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726277

RESUMO

Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.

4.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467141

RESUMO

Fluorescence-based detection assays play an essential role in the life sciences and medicine. To offer better detection sensitivity and lower limits of detection (LOD), there is a growing need for novel platforms with an improved readout capacity. In this context, substrates containing semiconductor nanowires may offer significant advantages, due to their proven light-emission enhancing, waveguiding properties, and increased surface area. To demonstrate and evaluate the potential of such nanowires in the context of diagnostic assays, we have in this work adopted a well-established single-chain fragment antibody-based assay, based on a protocol previously designed for biomarker detection using planar microarrays, to freestanding, SiO2-coated gallium phosphide nanowires. The assay was used for the detection of protein biomarkers in highly complex human serum at high dilution. The signal quality was quantified and compared with results obtained on conventional flat silicon and plastic substrates used in the established microarray applications. Our results show that using the nanowire-sensor platform in combination with conventional readout methods, improves the signal intensity, contrast, and signal-to-noise by more than one order of magnitude compared to flat surfaces. The results confirm the potential of lightguiding nanowires for signal enhancement and their capacity to improve the LOD of standard diagnostic assays.

5.
Nano Lett ; 19(9): 6182-6191, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31369284

RESUMO

Determining the surface concentration and diffusivity of cell-membrane-bound molecules is central to the understanding of numerous important biochemical processes taking place at cell membranes. Here we use the high aspect ratio and lightguiding properties of semiconductor nanowires (NWs) to detect the presence of single freely diffusing proteins bound to a lipid bilayer covering the NW surface. Simultaneous observation of light-emission dynamics of hundreds of individual NWs occurring on the time scale of only a few seconds is interpreted using analytical models and employed to determine both surface concentration and diffusivity of cholera toxin subunit B (CTxB) bound to GM1 gangliosides in supported lipid bilayer (SLB) at surface concentrations down to below one CTxB per µm2. In particular, a decrease in diffusivity was observed with increasing GM1 content in the SLB, suggesting increasing multivalent binding of CTxB to GM1. The lightguiding capability of the NWs makes the method compatible with conventional epifluorescence microscopy, and it is shown to work well for both photostable and photosensitive dyes. These features make the concept an interesting complement to existing techniques for studying the diffusivity of low-abundance cell-membrane-bound molecules, expanding the rapidly growing use of semiconductor NWs in various bioanalytical sensor applications and live cell studies.


Assuntos
Toxina da Cólera/isolamento & purificação , Nanotecnologia , Nanofios/química , Imagem Individual de Molécula , Membrana Celular/química , Membrana Celular/efeitos da radiação , Toxina da Cólera/química , Gangliosídeo G(M1)/química , Luz , Bicamadas Lipídicas/química , Microscopia de Fluorescência , Ligação Proteica , Semicondutores
6.
Nano Lett ; 18(8): 4796-4802, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001138

RESUMO

Semiconductor nanowires can act as nanoscaled optical fibers, enabling them to guide and concentrate light emitted by surface-bound fluorophores, potentially enhancing the sensitivity of optical biosensing. While parameters such as the nanowire geometry and the fluorophore wavelength can be expected to strongly influence this lightguiding effect, no detailed description of their effect on in-coupling of fluorescent emission is available to date. Here, we use confocal imaging to quantify the lightguiding effect in GaP nanowires as a function of nanowire geometry and light wavelength. Using a combination of finite-difference time-domain simulations and analytical approaches, we identify the role of multiple waveguide modes for the observed lightguiding. The normalized frequency parameter, based on the step-index approximation, predicts the lightguiding ability of the nanowires as a function of diameter and fluorophore wavelength, providing a useful guide for the design of optical biosensors based on nanowires.


Assuntos
Técnicas Biossensoriais/instrumentação , Corantes Fluorescentes/química , Gálio/química , Nanofios/química , Fosfinas/química , Óxido de Alumínio/química , Fluorescência , Luz , Fibras Ópticas , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...